47 research outputs found

    Being Negative but Constructively: Lessons Learnt from Creating Better Visual Question Answering Datasets

    Full text link
    Visual question answering (Visual QA) has attracted a lot of attention lately, seen essentially as a form of (visual) Turing test that artificial intelligence should strive to achieve. In this paper, we study a crucial component of this task: how can we design good datasets for the task? We focus on the design of multiple-choice based datasets where the learner has to select the right answer from a set of candidate ones including the target (\ie the correct one) and the decoys (\ie the incorrect ones). Through careful analysis of the results attained by state-of-the-art learning models and human annotators on existing datasets, we show that the design of the decoy answers has a significant impact on how and what the learning models learn from the datasets. In particular, the resulting learner can ignore the visual information, the question, or both while still doing well on the task. Inspired by this, we propose automatic procedures to remedy such design deficiencies. We apply the procedures to re-construct decoy answers for two popular Visual QA datasets as well as to create a new Visual QA dataset from the Visual Genome project, resulting in the largest dataset for this task. Extensive empirical studies show that the design deficiencies have been alleviated in the remedied datasets and the performance on them is likely a more faithful indicator of the difference among learning models. The datasets are released and publicly available via http://www.teds.usc.edu/website_vqa/.Comment: Accepted for Oral Presentation at NAACL-HLT 201

    Evaluating Text-to-Image Matching using Binary Image Selection (BISON)

    Full text link
    Providing systems the ability to relate linguistic and visual content is one of the hallmarks of computer vision. Tasks such as text-based image retrieval and image captioning were designed to test this ability but come with evaluation measures that have a high variance or are difficult to interpret. We study an alternative task for systems that match text and images: given a text query, the system is asked to select the image that best matches the query from a pair of semantically similar images. The system's accuracy on this Binary Image SelectiON (BISON) task is interpretable, eliminates the reliability problems of retrieval evaluations, and focuses on the system's ability to understand fine-grained visual structure. We gather a BISON dataset that complements the COCO dataset and use it to evaluate modern text-based image retrieval and image captioning systems. Our results provide novel insights into the performance of these systems. The COCO-BISON dataset and corresponding evaluation code are publicly available from \url{http://hexianghu.com/bison/}

    Learning Structured Inference Neural Networks with Label Relations

    Full text link
    Images of scenes have various objects as well as abundant attributes, and diverse levels of visual categorization are possible. A natural image could be assigned with fine-grained labels that describe major components, coarse-grained labels that depict high level abstraction or a set of labels that reveal attributes. Such categorization at different concept layers can be modeled with label graphs encoding label information. In this paper, we exploit this rich information with a state-of-art deep learning framework, and propose a generic structured model that leverages diverse label relations to improve image classification performance. Our approach employs a novel stacked label prediction neural network, capturing both inter-level and intra-level label semantics. We evaluate our method on benchmark image datasets, and empirical results illustrate the efficacy of our model.Comment: Conference on Computer Vision and Pattern Recognition(CVPR) 201
    corecore